



załącznik do Regulaminu programu "visiting profesor"

| Code of the                       | 4606-VP-ES-00023                   |                                                          | Name of the course                |                        | rse             | Polish                           |  | j                                  | Zaawansowana geometria w<br>informatyce   |                             |   |
|-----------------------------------|------------------------------------|----------------------------------------------------------|-----------------------------------|------------------------|-----------------|----------------------------------|--|------------------------------------|-------------------------------------------|-----------------------------|---|
| course                            |                                    |                                                          |                                   |                        |                 | English                          |  | 1                                  | Advanced Geometry for Computer<br>Science |                             |   |
| Type of the course                | Specialty subject                  |                                                          |                                   |                        |                 |                                  |  |                                    |                                           |                             |   |
| Course coordinator                | Przemyslaw Mus                     | Przemyslaw Musialski Con                                 |                                   |                        | Cours           | rse teacher Przemysław Musialski |  |                                    |                                           |                             |   |
| Implementing unit                 | Faculty of Math<br>and Information | / of Mathematics Scientific discipline /<br>disciplines* |                                   |                        |                 |                                  |  |                                    |                                           |                             |   |
| Level of education                | Doctoral st                        | oral studies Semester                                    |                                   |                        |                 | spring                           |  |                                    |                                           |                             |   |
| Language of the course            | English                            |                                                          |                                   |                        |                 |                                  |  |                                    |                                           |                             |   |
| Type of assessment                | Exam                               | cam Number of ho<br>a semeste                            |                                   | ber of hou<br>semester | rs in           | 30                               |  |                                    | ECTS credits                              |                             | 2 |
| Minimum number<br>of participants | 12                                 |                                                          | Maximum number<br>of participants |                        | 60              |                                  |  | Available for studer<br>(BSc, MSc) | nts                                       | <u>Yes</u> /No<br>MSc - Yes |   |
| Type of classes                   |                                    | Lecti                                                    | ecture Aud<br>cla                 |                        | litory<br>.sses | Project classes                  |  | t classes                          | Laboratory                                | aboratory Seminar           |   |
| Number of hours                   | in a week                          |                                                          |                                   |                        |                 |                                  |  |                                    |                                           |                             |   |
| in a semester                     |                                    | 30                                                       | )                                 |                        |                 |                                  |  |                                    |                                           |                             |   |

\* does not apply to the Researcher's Workshop

## 1. Prerequisites

Basic knowledge of algebra. Undergraduate course in this topics is prerequisite. Recap will be provided.

#### 2. Course objectives

The course provides basic principles in different areas of geometry, which are important for applications in computer science such as computer graphics, computer vision and image processing, CAD-engineering, computer animation, and geometric design.

## 3. Course content (separate for each type of classes)

Lecture

Areas that are covered are: 1. Elementary Analytic Geometry 2. Projective Geometry (homogeneous coordinates, projective transformations, quadrics) 3. Differential Geometry (curve theory, geometry on surfaces, curvature theory of surfaces, numerical aspects)

| 4. Learning outcomes            |                               |                                                        |                                            |  |  |  |  |
|---------------------------------|-------------------------------|--------------------------------------------------------|--------------------------------------------|--|--|--|--|
| Type of<br>learning<br>outcomes | Learning outcomes description | Reference to the<br>learning outcomes of<br>the WUT DS | Learning outcomes<br>verification methods* |  |  |  |  |
| Knowledge                       |                               |                                                        |                                            |  |  |  |  |





| K01                | The student knows modern methods of advanced geometry used in computer graphics.                                                                                                                                                                                   | SD_W2 | exam |  |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|--|--|--|
| K02                | The student knows and understands the main development trends in computer graphics.                                                                                                                                                                                | SD_W3 | exam |  |  |  |
| Skills             |                                                                                                                                                                                                                                                                    |       |      |  |  |  |
| S01                | The student is able to critically analyze and<br>evaluate the results of scientific research in the<br>field of geometry and computer graphics, in<br>particular assess the usefulness and possibility<br>of using the results of theoretical work in<br>practice. | SD_U2 | exam |  |  |  |
| S02                | The student is able to communicate on specialist<br>topics related to geometry and computer<br>graphics to a degree that allows active<br>participation in the national and international<br>scientific community.                                                 | SD_U4 | exam |  |  |  |
| Social competences |                                                                                                                                                                                                                                                                    |       |      |  |  |  |
| SC01               | The student recognizes the importance of<br>knowledge and scientific achievements in<br>solving cognitive and practical problems.                                                                                                                                  | SD_K2 | exam |  |  |  |

\*Allowed learning outcomes verification methods: exam; oral exam; oral test; project evaluation; report evaluation; presentation evaluation; active participation during classes; homework; tests

## 5. Assessment criteria

At the end of the course there will be an individual written exam (test), based on the lectures and the homework exercises. Grades: >50% - 3.0; >60% - 3.5; >70% - 4.0; >80% - 4.5; >90% - 5.0

# 6. Literature

Primary references:

[1] Gilbert Strang, Linear Algebra And Its Applications, 4Ed Paperback - 17 Nov. 2005

[2] Guide to Computational Geometry Processing: Foundations, Algorithms, and Methods 2012th Edition by J.

Andreas Bærentzen (Author), Jens Gravesen (Author), François Anton (Author), Henrik Aanæs, Springer

[3] Polygon Mesh Processing, by Mario Botsch (Author), Leif Kobbelt (Author), Mark Pauly (Author), Pierre Alliez (Author), Bruno Levy

Secondary references:

[1] Curves and Surfaces for CAGD, A Practical Guide, 5th edition, by Gerald Farin, Published by Morgan-Kaufmann, Published 2002, 499 pages, ISBN 1-55860-737-4

[2] Computational Line Geometry 2001st Edition, by Helmut Pottmann (Author), Johannes Wallner (Author)

| 7. PhD student's workload necessary to achieve the learning outcomes** |                                                                                                                  |                 |  |  |  |
|------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|
| No.                                                                    | Description                                                                                                      | Number of hours |  |  |  |
| 1                                                                      | Hours of scheduled instruction given by the academic teacher in the classroom                                    | 30              |  |  |  |
| 2                                                                      | Hours of consultations with the academic teacher, exams, tests, etc.                                             | 5               |  |  |  |
| 3                                                                      | Amount of time devoted to the preparation for classes, preparation of presentations, reports, projects, homework |                 |  |  |  |
| 4                                                                      | Amount of time devoted to the preparation for exams, test, assessments                                           | 25              |  |  |  |





|               |         | Total number of hours | 60 |
|---------------|---------|-----------------------|----|
|               |         | ECTS credits          | 2  |
| which 1 DOTED | 25 20 1 | 1 ECEC 1101           |    |

\*\* 1 ECTS = 25-30 hours of the PhD students work (2 ECTS = 60 hours; 4 ECTS = 110 hours, etc.)

| 8. Additional information                                                              |   |  |  |  |  |
|----------------------------------------------------------------------------------------|---|--|--|--|--|
| Number of ECTS credits for classes requiring direct participation of academic teachers | 1 |  |  |  |  |
| Number of ECTS credits earned by a student in a practical course                       | 1 |  |  |  |  |